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1. Introduction

Recent years have seen an explosion of empirical research leading to an unprecendented advance in our
knowledge of the interaction of society and the environment. As the amount of research continues to grow,
it becomes more important that studies be used to collectively answer societally important questions. The
approach of this report towards environmental assessment is an effort to holistically integrate this research.
Our vision was to create a system to not only incorporate recent discoveries, but also to be updated with new
research and new findings as they become available. We present below a flexible, open-source, and adaptive
system to combine our best estimates of environmental impacts, allowing us to constantly learn the broad
societal effects from an evolving body of research. The current approach is not limited to climate, however, as
it can be extended to project many different types of impacts (e.g., from policy changes). The tools we have
designed can become a central hub enabling researchers to collaborate on a larger body of socially important
research.

We identify and employ a meta-analytical approach (described in section that draws on Bayesian
methods commonly used in medical research and previously implemented in [Hsiang et al.| (2013b)). Using
these techniques, we design an open-source tool which can update aggregated dose-response functions in
real time as new research becomes available (fig. . With the method of meta-analysis in place, we then
identify a group of rigorous studies across a number of climate-impacted sectors. Combining the dose-response
functions from individual studies (detailed in section , we generate a series of aggregate response functions
for each sector. Finally, to understand the impact of climate upon each sector, we take the product of our
response functions and the downscaled physical clmate projections described in Technical Appendix A, giving
us partial equilibrium impacts out to the end of the current century (described in section . These impacts
are then used as input to computationally model the general equilibrium effects of changes in climate.

2. Meta-Analysis Approach

The empirical impact functions are treated as conditional distributions, conditioned on weather variables
such as mean temperature and precipitation. This representation facilitates meta-analysis, and also captures
the range of uncertainty in the empirical estimates. Each distribution is evaluated at a given quantile only
when it is applied to data, as described in section [4]

2.1. Hierarchical Bayesian Modeling

The impact estimates that combine results from more than one study apply a Bayesian hierarchical model
structure, as described by |Gelman et al.| (2013). This approach simultaneously estimates a distribution of
possible underlying effect sizes, as well as a degree of “partial-pooling”. If the individual study estimates
are consistent with a single underlying effect, their estimates are pooled to accurately estimate the effect.
However, if the study estimates are inconsistent with each other, the underlying effect is estimated to be only
loosely informed by each study, which is considered to have its own idiosyncratic effect.

Consider a collection of impact functions, f;(5;|T), for ¢ € {1,..., N} indexing independently published
results. Here, f;(5;|T) is a probability distribution for 5; conditioned on a weather variable T. We wish to
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Figure B1: Pooled (left) and Bayesian hierarchical (right) estimates for a constructed polynomial and sinu-
soidal response function. The pooled distribution is calculated as p(B|x) = p(ﬁﬁilﬁ = filx) x vazl p(Bilz),
where p(f;|x) is the conditional distribution for either the polynomial or sinusoidal response function at a
given value of x. The 95% confidence interval of the pooled result does not overlap with the individual esti-
mates when they are far from each other. The confidence intervals on B are wider, reflecting the uncertainty
in resolving the two estimates.

combine these estimates into a single conditional distribution, g(B |T"), where B is called the “hyper-parameter”.
We treat each value of T' independently, so we will write these functions as f;(53;) and g(8).

Under hierarchical merging, the conditional parameter distributions are required to be Gaussian distri-
butions, and below, Gaussian parameter estimates errors are used in all applicable response functions. The

governing equations are,

02‘ ~ _/\/’(377-2)
Bi ~ N(6;,07)

where ; is a measured parameter, corresponding to a true (unobserved) parameter §; which characterizes the
response for study . o? is the standard error of 3;. We are interested in 8, the underlying hyper-parameter,
and 72, the variance between models. We apply non-informative priors to B and 7. That is, p(ff) x 1 and
p(7) oc 1. The values of 8; and 0% are provided by the published studies, and the rest of the parameters are
simultaneously estimated.

An analytic solution exists for how to generate draws from the posterior distribution of this hierarchical
model, and is described in chapter 5 of |Gelman et al| (2013). We approximate the posterior by producing
draws and constructing a histogram for each conditional distribution.

Figure [BI] shows an example of how pooled and Bayesian hierarchical results differ for a combination of
two simple impact functions.

2.2. Distributed Meta-Analysis System

To support the management of empirical results, the meta-analysis combination process, and the applica-
tion of these results to data, we constructed a new tool called DMAS, the Distributed Meta-Analysis Systenﬂ
This system currently operates on a dedicated server housed at the University of California, Berkeley. The
heart of DMAS is a database of results that can be easily recombined into many different meta-analyses. This
database is designed to be expanded in a decentralized manner, by “crowd-sourcing” from scientists working
independently to detail their empirical ﬁndingﬂ By combining the efforts of many researchers throughout
various academic disciplines in an Internet research community, the capacity of scientists to maintain up-to-
date empirical relationships increases drastically. Below, we detail the numerous features which are available

! Available online at http://dmas.berkeley.edu/

2A similar process of decentralized collection of results has begun for drug discovery (Lessl et all, ,
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to promote academic exchange on DMAS. Unlike many crowd-sourcing projects, the necessary vetting of this
information is made much easier by connecting each estimate with published literature. This connection to
academic journals further supports the construction of comprehensive meta-analyses.

2.2.1. Model Types
The DMAS library results are conditional distributions, representing one or more parameter estimates
typically in a dose-response curve. The following representations are used for impact functions in this report:

Discrete-Discrete Probability Models: The discrete-discrete probability model represents either a sam-
pled approximation to a continuous probability density function, f(y|z), at discrete values of y € {y;} and
x € {z;}, or a probability mass function of the same form. This is most appropriate when the collection of
response outcomes is limited or categorical. Both the dependent and independent variables may be either
categorical or sampled at a collection of numerical levels. For continuous functions, the sampling of the
dependent variable, {y;}, and the independent variable, {x;}, can be unevenﬂ This model can be treated as
a matrix P = (p;; = f(y;j|z:)). Discrete-discrete probability models are the ultimate form for any Bayesian
hierarchical meta-analysis result, after draws from the posterior distribution are organized into histograms.

Spline Models: The spline model represents a continuous conditional probability function, using a spline
to denote the log of its values.

eaotborter”  for yo <y <y
Flylz) =  enthwres”  for yy <y <y

Distinct splines are described at distinct values of the conditioning variable z € {z;}, which may be
categorical or numerical and may be sampled unevenly. The lowest value of yy for each x may be —oo, and
the highest value of y; may be co. Spline models are used for most impact functions, since they provide
arbitrary resultion on the shape of the conditional distribution curve.

Bin Models: A bin model represents a model defined across continuous spans, where the distribution
is constant over each span. It is a combination of information describing the width of each bin and an
underlying categorical model of one of the other model types describing each bin’s probability distribution.
Bin models are used for degree-day impacts as in |Schienker and Roberts| (2009), with an underlying spline
curve representation for each bin.

2.2.2. Importing Models

Each model type has a file format specification, and parameter estimates can be added by uploading files in
these formats. We also provide a variety of simplified ways to specify models. This includes a spreadsheet-style
entry for discrete-discrete probability models, a GUI model generator for uniform, Gaussian, and polynomial
models, and a “feature interpreter” which allows spline models to be described in terms of any collection of
their mean, variance, standard deviation, skew, mode, or arbitrary confidence intervals.

2.2.3. Additional Features

Finally, DMAS includes a wide range of features that can help support the continued evolution and use of
these results. The models can be visualized, compared, and combined with weights. They can be selectively
included or excluded from a meta-analysis combination, either manually or using arbitrary population or
study characteristics. Arbitrary functions of results can be computed, applied to data, and output to for
external use. Finally, the entire database can be quickly searched using tags, parameter definitions, and
study-specific meta-data.

Some of the greatest advantages of DMAS are its collaborative aspects. Scientists can curate collections
of results for meta-analyses, with a moderation system for others to submit additions. They can also create

3For calculating a CDF, we assume that each y; represents a histogram-style bin, while under interpolation we use linear
interpolation (see section .
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Figure B2: A: Front page of the DMAS system, showing a gallery of existing results. B: Search screen,
allowing results to be filtered by population and study characteristics. C: A sample result, the 8-schools
example from |Gelman et al| (2013)), showing options for selecting and weighting results and identifying the
meta-analysis combination technique.
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crowd-sourcing templates, which ask for study results in a customized form, to quickly collect information
from many researchers. In addition, each result and each collection can act as a discussion board, inviting
authorized users to debate the choices used.

We hope that this tool can act as a platform to promote the meta-analysis process and make results
available to both modelers and a wider audience.

3. Micro-founding impact functions

We develop empirical, micro-founded impact functions for a number of sectors seen to be economically
important. These include agriculture, crime, health, and labor. Within each sector, we draw on statistical
studies that robustly account for a number of potential confounding factors when trying to identify the
impacts of climate. For the current analysis, we make no claim to having performed a exhaustive quantitative
meta-analysis from the reviewed papers. Numerous high-quality and insightful studies are omitted from
sectors, though many studies were used to confirm the validity of the selected papers. However, we have
designed our approach to be inclusive in the long-run by building an open-source system for meta-analysis
and collaboration. Incorporating each study took considerable effort, often requiring new data, efforts on the
part of the original authors and ourselves to rerun analyses, and extensive discussions to ensure an accurate
interpretation of results. In this process, we are indebted to each of the authors listed below. Our final
selection required studies to meet the following criteria:

1. Nationally representative. We required that studies be conducted at national level or be drawn
from a representative random sample of the entire US. This was of particular relevance to health sector
studies. For example, many that we considered performed detailed time-series analysis of single or
multiple cities (e.g., |Curriero et all [2002; |Anderson and Belll [2009). While these were high-quality
studies, inclusion would have required either a weighting scheme based on city populations or an
assumption of national generalizability.

2. Analyze recent time-periods in US history. As we are concerned with potential effects of adap-
tation, we preferred studies that identified effects as close to the present as possible.

3. Robust to unobserved factors that differ across spatial units (jurisdictions, counties, or states).
We placed an emphasis on studies that were able to control for unobservable differences between spatial
units of analysis with the inclusion of fixed effects. This required the use of longitudinal or panel data,
as cross-sectional comparisons between could suffer from omitted variable bias.

4. Identify responses to high-frequency climatic variables (days or weeks). The importance of
using high-frequency data to estimate climate impacts is demonstrated by all papers included, building
on early work by |Deschenes and Greenstone| (2007), and in one case finding large effects by considering
sub-daily temperature responses (Schlenker and Robertsl [2009)).

5. Identify responses to the full distribution of temperature and rainfall measures. Many
studies looked at single climatic events, or parts of the temperature or rainfall distribution (e.g., heat-
waves in |Anderson and Bell, 2011). As we are modeling annual impacts, we chose only those studies
that included the full distribution of realised climate outcomes, and ensured the validity of results by
comparison to numerous studies looking at single phenomena or sub-populations.

6. Account for seasonal patterns and trends in the outcomes. Cyclicality and seasonality of
responses to climate forcings is a source of major concern, so we selected only those studies that
robustly accounted for seasonal patterns and time trends in their analysis.

7. Ecologically valid. We required studies to be valid for real-life circumstances and levels of exposure,
which led us to prefer studies that were quasi-experimental in design, using observational data. For
example, in the case of labor, numerous laboratory studies exist on the intensive margin effects of
temperature upon productivity (e.g., |Seppanen et al.l 2006]). As these raised a question of ecological
validity when applied to the labor sector, we chose to not include them.

B-5



Many of the impacts of climate change will unfold over years, but distinguishing between the role of
climate change and the role of social, technological, and economic evolution is very difficult over any long
time horizon. Our criteria for selecting studies requires that long-term trends are accounted for and are not
reflected in the measured impact response functions. As a result, the impacts that we measure are from
weather “shocks”, short-term changes in temperature and precipitation which are not captured by long-term
trends. This approach has both strengths and weaknesses. Its key strength is that it clearly identifies the
impacts of weather as distinct from longer-term changes. However, it may miss many of the long-term impacts
of climate change that do not take the form of increases in the size, frequency, and duration of weather shocks.

We identify a number of studies using panel data to isolate the variation within the relevant spatial
unit, while controlling for unobservable difference between units. Estimates from each of the studies were
combined, as detailed in section[2] We have been conservative in our choice of studies for the current analysis,
using only studies which we think most credibly identify the impact of climate upon specific outcomes in
each sector. However, our approach allows for future studies to be incorporated, introducing new findings,
and modifying the current results. The following is a complete list of empirical response functions used in
this study, with detailed discussion of each of the studies beneath (shown in fig. [B4):

Agriculture Maize yields vs. temperature (East)
Maize yields vs. temperature (West)
Maize yields vs. precipitation (East)
Maize yields vs. precipitation (West)
Wheat yield vs. temperature
Soybean yields vs. temperature (East)
Soybean yields vs. temperature (West)
Soybean yields vs. precipitation (East)
Soybean yields vs. precipitation (West)
Cotton yields vs. temperature
Cotton yields vs. precipitation
Maize yields vs. 100ppm CO; increase
Wheat yields vs. 100ppm COs increase
Soybean yields vs. 100ppm CO; increase
Cotton yields vs. 100ppm COs increase
Crime Violent crime vs. temperature
Violent crime vs. precipitation
Property crime vs. temperature
Property crime vs. precipitation
Health Mortality vs. temperature (all age)
Mortality vs. temperature (younger than 1 year)
Mortality vs. temperature (1 - 44 years)
Mortality vs. temperature (45 - 64 years)
Mortality vs. temperature (65 years and up)
Labor Hours worked in high-risk industries vs. temperature
Hours worked in low-risk industries vs. temperature
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3.1. Agriculture
Schlenker and Roberts (2009))

Outcome data: Yields for maize, soybeans, and cotton from US Department of Agriculture National
Agricultural Statistical Service.

Climate data: PRISM temperature and rainfall, temporally downscaled to daily resolution.

Sample period: 1950-2009

Sample unit: County-years, for counties with recorded yields of maize, soybeans, or cotton

Methodology: Piecewise linear response of log(yield) to cumulative temperature (degree days) and

polynomial response to precipitation (seasonal total), controlling for county fixed ef-
fects and state-specific quadratic trends. Piecewise linear models are specific to each
crop type, with thresholds that capture the beneficial effects of temperatures below a
certain point, and the deleterious effects above.

Result: Modified version of |Schlenker and Roberts, 2009, SI Appendix, p. 9, fig. A3; and p.
20, fig. 10

Impact function:  We contacted the authors of the study to select a preferred response function from the
multiple methods they had employed, selecting a piecewise-linear specification using
degree days for temperature and seasonal total precipitation. We obtained impact
functions for each of the three crops studied, for both temperature and precipitation.
The authors note the distinct difference in response between counties to the east and
west of the 100*" meridian for maize and soybeans, so we obtained separate response
functions in for these regions. On December 19*", 2013, we were sent a complete list of
response functions that were updated span the time period up to and including 2011
(as presented in |Berry et all,[2012).

Hsiang, Lobell, Roberts, and Schlenker (2013a))

Outcome datas: USDA-NASS

Climate data: University of Delaware monthly temperature and precipitation

Sample period: 1950-2007

Sample unit: County-year

Methodology: Non-linear response of log(yield) to crop-specific seasonal average temperature and
precipitation, controlling for county and year fixed effects.

Result: Hsiang et al. 2013a, p. 19.

Impact function: = We use the response of wheat to seasonal average temperature presented in the paper.
Results were obtained from the author. Calorie weighted averages were taken between
maize and wheat in order to combine results, as detailed in section E}

McGrath and Lobell (2013)

Outcome data: Yield from 1960-2004 from FAOStat.

Climate data: Keeling CO4 concentrations and country average P/PET.

Methodology: Process model that develops the response of different crops to carbon dioxide con-
centrations and growing season P/PET from empirical studies. This is then used to
estimate the changes to historical yields under a 100ppm increase in COs.

Result: McGrath and Lobell, [2013] p. 5, fig. 4 (obtained US result from authors).

Impact function: =~ We contacted the authors and received estimates of the COs fertilization relationship
with yields of different crops on January 17", 2014, specifically for the US. Data were
for 8 different crop types. We used an average of all types for cotton estimates.

3.1.1. Storage
In adition to the above impacts on yields, we observe that farmers store crops for sale in the future,
and so the overall impact of climate on supply of crops may appear smoother than if there were no stor-

age. For our projections, we also make use of Fisher et al. (2012, Appendix p.xi, table A4) to estimate crop
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Figure B3: Predicted consumption of maize, modeled as a moving average of production. Predicted values
compare well to observed consumption, and allow us to project the smoothed consumption values out to the
end of the century.

consumption as a moving average process of crop production. We estimated the following equation for crop ¢,

L
In(consumption).r = Y [Bes x In(production)et—i] + 0.t + Yet® + €c
=0

where L = 2 and L = 3 for soyebans, and we account for linear and quadratic time-trends. Results of
this process are shown in fig. B3] We project the smoothing of future crops with a time-series structure
that incorporates these empirical results on storage. Weights for each crop are constructed from the lagged
coefficients, 3;, presented in section

3.2. Crime
Jacob, Lefgren, and Moretti (2007))

Outcome data: FBI National Incident Based Reporting System

Climate data: Weekly temperature and precipitation from the NCDC GHCN-Daily database.
Sample period: 1995-2001

Sample unit: Jurisdiction-weeks

Methodology: Linear response of log(crime _rate) to average temperature and precipitation, control-

ling for jurisdiction-by-year and month fixed effects, as well as jurisdiction-specific 4**
order polynomials in day of year.
Result: Modified version 0f|Jacob et al.l, |2007L p- 508-509, table 2.
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Impact function:

Ranson (2014])

Outcome data:
Climate data:
Sample period:
Sample unit:
Methodology:

Result:
Impact function:

3.3. Health

We obtained data and replication files from the authors and generated coefficients
for a month-long exposure window, to account for displacement of crime, as noted in
the text. The climate variables are at weekly resolution, and in order to make this
comparable to|Ranson|(2014) we reran the analysis using maximum temperatures and
then scaled the coefficients in |Jacob et al| (2007). We did this by first dividing the
coefficient for the monthly exposure by 7, to get a daily response, and further by 4
to account for the lagged climate variables. This resulted in the marginal effect on
crime of a 1°F increase in daily temperature. Taking a reference point of zero response
at a temperature of 65°F (to coincide with the central point of the reference bin of
(Ranson), 2014)) we derived a linear response of violent crimes and property crimes to
temperature and precipitation.

FBI Universal Crime Reporting Data.

Daily temperature and precipitation from the NCDC GHCN-Daily database.
1960-2009

County-months

Non-linear response of log(crime rate) to maximum temperature and precipitation,
controlling for county-by-year and state-by-month fixed effects. Temperature is trans-
formed into number of days within 10°F bins, with the 60-69°F bin as a reference
point.

Ranson,, 2014}, p. 9, fig. 4

We contacted the author and received updated estimates of the percentage change
for each of 8 different classes of crimes on March 12**, 2014. To derive response
functions, we grouped these into violent crimes (murder, rape, aggravated assault, and
simple assault) and property crimes (robbery, burglary, larceny, and vehicle theft), and
combined results within each class of crimes.

Deschenes and Greenstone (2011])

Outcome data:
Climate data:
Sample period:
Sample unit:
Methodology:

Result:
Impact function:

National Center for Health Statistics Compressed Mortality Files.

Daily temperature and precipitation from NCDC

1968-2002

County-years

Non-linear response of mortality to temperature, controlling for county-by-age-group
and state-by-year-by-age-group fixed effects. Temperature is transformed into number
of days in an year-long window within 10°F bins, with the 50-59°F bin as a reference
point.

Modifed version of |Deschénes and Greenstonel, 2011} p. 9, fig. 2

We contacted the authors and received estimates on November 5, 2013. To make
the study comparable to Barreca et al. (2013), the main analysis was rerun with
log(mortality) as an outcome.

Barreca, Clay, Deschenes, Greenstone, and Shapiro (2013)

Outcome data:

Climate data:
Sample period:
Sample unit:

Mortality from the Mortality Statistics of the US (pre-1959) and the Multiple Cause
of Death files (post-1959).

Daily temperature and precipitation from the NCDC GHCN-Daily database.
1929-2004

State-months
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Methodology: Non-linear response of log(mortality) to temperature, controlling for state-by-month
and year-month fixed effects, and state-by-month-specific quadratic time trends. Tem-
perature is transformed into number of days in a two-month window within 10°F bins,
with the 60-69°F bin as a reference point.

Result: Modified version of |Barreca et all 2013, p. 37, table 3, panel B

Impact function: ~ We contacted the authors and received estimates on 5** November, 2013. The preferred
specification, to account for forward displacement, was to use monthly mortality with a
2-month exposure window to temperature. We used the estimated response from 1960-
2004. To make this response comparable to the response of Deschenes and Greenstone
(2011)), the analysis was rerun with the reference point changed to the 50-59°F bin.
To scale the coeflicients, we divided each coefficient value by a factor of six. We also
obtained age-specific response functions for ages 0-1, 1-44, 45-64, and 65+.

3.4. Labor
Graff Zivin and Neidell (2014])

Outcome data: Hours worked from the American Time Use Survey.

Climate data: Daily temperature, precipitation, and humidity from NCDC.

Sample period: 2003-2006

Sample unit: Person-days

Methodology: Seemingly-unrelated regression allowing for correlated errors between time spent work-

ing, or indoor and outdoor leisure. Non-linear response to maximum temperatures
controlling for county, year-by-month, and day of week fixed effects, as well as individ-
ual level controls. Temperature is transformed into number of days within 5°F bins,
with the 76-80°F bin as a reference point.

Result: High-risk: |Graff Zivin and Neidelll 2014, p. 15, fig. 3; Low-risk: |Graff Zivin and
Neidell, 2014, p. 16, fig. 4

Impact function: =~ We contacted the authors prior to publication and received full estimates for high-risk
and low-risk labor responses to temperature on December 18", 2013.

4. Application of Impact Functions

We apply two approaches for sampling the conditional distributions for each impact function: a Monte
Carlo approach and a constant quantile approach. The Monte Carlo approach captures the full range of
uncertainty in impact functions estimates, under the assumption that each impact function is independent.
We randomly select quantiles for each of the 26 empirical distributions. The constant quantile approach
applies the same quantile across all distributions. In particular, we use a low quantile (p = 0.33333), median
quantile (p = 0.5) and high quantile (p = .66667). The ordinality of the quantiles is chosen so that these
describe, in essence, low, median, and high impact scenarios. High quantiles correspond to greater losses
in yield and labor productivity, and greater increases in crime and mortality, within the range of statistical
uncertainty.

Under either approach, the same quantile is used across the entire range of the conditioning variable. By
evaluating each impact function at a quantile, we generate a single-dimensional, deterministic function which
is used in the evaluation of the impact for each Monte Carlo or constant quantile run.

The impact results for crime, labor productivity, and mortality are all estimated by binning weather values.
In these cases, we construct a continuous impact curve by linearly interpolating betw