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Estimating the Frequency of 90 Degree Days 
While climate science has improved dramatically in recent years, predicting the severity and 
timing of future impacts remains a challenge – particularly at the local level.  

One of the largest sources of uncertainty in projecting future changes in the climate change 
is socioeconomic. However, even if we knew how society’s emissions rates would evolve 
with absolute certainty, we would still not be able to predict future warming precisely. To 
generate projections of temperature and precipitation underlying our effort to quantify the 
economic impacts of climate change, we combine projections of the probability of different 
levels of global average temperatures under different Representative Concentration 
Pathways (RCPs) from a simple climate model (SCM) with detailed projections from 
advanced global climate models (GCMs).  

Decades of study have resulted in better measurements, instruments, data protocols, and 
more sophisticated models of the complex and vast climate system. Many of the key 
advances in climate knowledge have come from large, international, cooperative efforts by 
climate modeling teams. Some of the most sophisticated and high-resolution projections 
come from the ensemble of models in the Coupled Modeled Intercomparison Project, which 
has completed its fifth phase (CMIP5). This suite of GCM simulations has become the gold 
standard for use in global climate assessments, including by the Intergovernmental Panel 
on Climate Change (IPCC). These GCMs represent the statistics of weather under imposed 
boundary conditions, like atmospheric GHG concentrations or solar intensity, and simulate 
detailed earth system dynamics, typically operating at a 1-degree or 2-degree grid (70-150 
miles at the mid-latitudes). They include an ever-more comprehensive set of components of 
the climate system: atmosphere, ocean, sea ice, land, and, in many cases, the carbon cycle.   

Because of the complexity and vastness of this system and its interactions, and the 
limitations of computing power, certain trade-offs exist in how climate is modeled. Unlike a 
weather forecast model -- which has a higher spatial resolution, assimilates observed 
weather data, and is run for a short time period -- GCMs are not constrained to match 
natural variation in short-run surface observations. The coarse geographic resolution of 
these models also fails to capture local meteorological phenomena, such as the urban heat-
island effect and small-scale land-sea interaction. Instead, GCMs are designed to represent 
the changing dynamics of weather systems at all points in the atmosphere and oceans. This 
monumental task leads to additional trade-offs that, in conjunction with the complexity of 
numerically solving the climate system, can result in persistent errors or “biases” in GCM 
representation of specific land-surface variables.  

Evidence-based, data-driven inputs  

Historical weather data used in today’s analysis comes from gridded temperature 
observations from Berkeley Earth Daily Land 1-degree x 1-degree Latitude-Longitude Grid. 
We add finer detail to each grid cell through a process called “downscaling.” We downscale 
the Berkeley Earth data using a historical high-resolution dataset from Princeton called the 
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Global Meteorological Forcing Dataset for land surface modeling, which combines historical 
reanalysis model output with observational products such as station and satellite data.  

We also need to enhance the resolution of GCM projections. With respect to time, GCMs 
offer the precise measurement that we need to estimate with high frequency the local 
effects of climate change, described as temporal resolution. However, with respect to 
geography, GCM projections lack the spatial resolution to assess impacts at a local level. We 
need both rich spatial and temporal information to effectively study the relationship between 
human systems and the climate. 

To produce projections, we draw on a dataset that employs a particular downscaling 
technique called bias-correction and spatial disaggregation (BCSD). Our raw climate 
projections come from NASA NEX-GDDP (project 1356) Global Daily Downscaled Climate 
Projections. The NASA NEX-GDDP archive includes CMIP5 projections downscaled and bias 
corrected to Princeton’s historical high-resolution dataset using BCSD. To maintain 
consistency with our historical dataset, we then further correct NASA NEX-GDDP to station 
observations by substituting the climatological (long-run) mean 1990 – 2010 temperature 
from the GCMs with that of Berkeley Earth by grid cell and day-of-year. The BCSD method 
applied to NASA NEX-GDDP corrects biases in mean and variance in temperature and 
precipitation by calendar month and grid cell through “quantile mapping.” It involves three 
steps: 

1. Identify biases in GCMs by comparing their historical simulations to the 
gridded observationally-derived dataset: the probabilities of GCM temperature 
and precipitation in the historical simulations were compared to observed 
values at those probabilities from the Princeton high resolution dataset. This 
mapping was used to remove biases in historical and projection simulations 
(see Step 2). 

2. Remove biases from global climate model projections: The NEX-GGDP team 
computed cumulative distributions (CDF) of observed values and historical 
climate model simulations over a historical time period to create a map for each 
grid cell and month of the year. For example, if the probability of a GCM 
temperature in a given month and grid cell is 0.10, its value is replaced with the 
observed station 0.10 temperature value for that month and grid cell. 
Temperature data was first detrended, due to the quasi-normal nature of the 
distribution of local temperatures, while precipitation was not. 

3. Downscale resulting projections to finer resolution: the bias corrected GCM 
temperature was downscaled by the NEX-GDDP team to 1/4o spatial resolution 
by adding fine spatial detail from Princeton’s GMFD.  

At the end of this process, we have a daily time series of high spatial resolution 
temperature, precipitation and other climate variables with the same mean and variance as 
historical observations.  

We estimate the number of days over 90 degrees Fahrenheit by counting the number of days 
per year in which the daily maximum temperature in the datasets described above meet or 
exceed 90F. We first remove observations for February 29 on leap years, to ensure each 
year’s count is of a consistent 365-day total. After calculating the days above 90F in each 

https://nex.nasa.gov/nex/projects/1356/
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year, we perform a rolling 21-year average, centered on the reported year, to ensure that we 
are reporting true shifts in climate rather than annual weather variability. These results are 
then weighted and joined into a distribution using the SMME method described above, 
resulting in a full probability distribution of expected counts of days over 90F. 

As a final step, we assess our confidence in these projections and exclude estimates in 
locations where the modeled projections fail to meet our standards. We estimate model 
projection error in the number of days over 90F, averaged over the period 1990-2010, 
relative to the downscaled Berkeley Earth historical temperature observations over the 
same period. Where the range of model projections falls more than 50% off of the historical 
value, we exclude these locations. 

Capturing the full range of climate sensitivity 

We know certain feedbacks within the climate system may amplify or diminish the effect of 
rising GHG concentrations. These feedbacks include increased water vapor in the 
atmosphere; decreased reflectivity as snow and ice coverage shrinks; changes in the rate at 
which land, plants, and the ocean absorb carbon dioxide; and changes in cloud 
characteristics. A better understanding of the role these longer-term feedbacks play will 
help paint a clearer picture of how future climate change will impact human systems. 

The suite of GCMs is not designed to capture the full range of possible future climate 
responses. GCMs are rooted in climate physics, built with physical and empirically-based 
parameters, and benchmarked against historical climate evolution. Collectively, this 
ensemble of models produces a range of future climate outcomes for a given RCP 
emissions scenario, but in each model, the amount of warming projected in response to 
changes in GHG concentrations is an emergent property. In other words, it is something that 
is affected by many different processes and interactions and reflects each modeling team’s 
best estimate of the dynamics of the global climate system. 

Our method incorporates projections from both GCMs and SCMs. While GCMs provide the 
rich temporal and spatial detail necessary for our work, the CMIP5 ensemble is not 
designed to capture the full range of climate responses to GHG emissions. That’s one 
reason why we could never use the set of CMIP5 outputs alone as a full representation of all 
possibilities of future climate change. SCMs are not sufficiently complex to represent the 
spatial patterns of changes in climate, but they are computationally efficient. We can run 
thousands of simulations and generate a probabilistic ensemble that takes into account the 
full range of climate sensitivity. Our final product is tied closely to observed surface 
temperature observations, incorporates fine grain spatial and temporal resolution, and 
yields full probability distributions for future climate change variables. 

To convert the ensemble of climate model runs available from the CMIP5 project into a true 
probability distribution of weather outcomes, we construct a mixed-model ensemble with a 
technique called Surrogate/Model Mixed Ensemble (SMME) (Rasmussen, 2016).  This means 
using an SCM to produce a probability distribution showing the wider range of possible 
temperature responses to changes in GHG concentrations, then supplementing CMIP5 
projections with simulated “surrogate” GCM projections to fill in the tails. 

Our SCM, in this case, is the Model for the Assessment of Greenhouse Gas 
Induced Climate Change (MAGICC) version 6 (see Meinshausen et al. 2011). MAGICC 

https://journals.ametsoc.org/doi/full/10.1175/JAMC-D-15-0302.1
https://link.springer.com/article/10.1007%2Fs10584-011-0156-z
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represents the atmosphere, ocean, and carbon cycles at a hemispherically averaged level. 
Specifically, we use MAGICC in probabilistic mode because we can vary the ECS as an input 
parameter. We constructed our distribution of input parameters from a statistical analysis, 
based on both historical observations and the probability distribution of ECS estimated using 
multiple lines of evidence in IPCC’s AR5. For each RCP analyzed in our work we use 600 
MAGICC model runs reflecting a range of equilibrium climate sensitivity (ECS) from 1.5 to 
5.9 degrees Celsius.  

To develop a distribution of high-resolution daily climate variables, we use a method called 
pattern scaling to produce surrogate GCMs. Pattern scaling involves computing a statistical 
relationship between global average temperature change and local temperature change 
around the globe in select GCMs. We use this relationship to produce synthetic GCM 
simulations by varying local temperature change based on SCM global average temperature 
projections that are hotter or colder than the CMIP5 outputs. 

The end result of this is a mixed-model ensemble of CMIP5 models and constructed model 
surrogates which together exhibit the wider distribution of climate sensitivity. Each of these 
“models” is a realization of our high temporal and spatial resolution climate simulations. 
The global mean temperature pathway predicted for late century (2080-2099) in these 
simulations is used to define weights based on where they fall in the full SCM temperature 
distribution. For each socioeconomic impact that we study, we then sort and weight those 
simulation results based on these weights. The temperature distribution of end-of-century 
warming matches the SCM’s modeled uncertainty in the climate’s response to increased 
GHG concentrations. 


	Evidence-based, data-driven inputs
	Capturing the full range of climate sensitivity

